AI, FinTech and Big Data - Landscape and Applications

Longbing Cao

The Data Science Lab University of Technology Sydney, Australia

www.datasciences.org

Agenda

- A brief review of classic to modern AI research in finance
 - The area of AI in finance
 - Pros and cons of AI techniques in finance
- Some examples on modelling cross-market couplings
 - Learning cross-market couplings for pool manipulation detection and financial crisis analysis
 - Vine copula + deep neural networks for asymmetric cross-market dependency modelling and portfolio investment

A Brief Review of Al in Finance

Several relevant activities on AI in finance

- IJCAI2020 Special Track on AI in FinTech
- IJCAI2020 panel on AI in FinTech
- IEEE Intelligent Systems: Special Issue on AI and FinTech
- DSAA'2020: Journal Track on Data Science and AI in FinTech
- ACM conference on AI in finance

https://datasciences.org/fintech/:

- AI in Finance: A Review, http://dx.doi.org/10.2139/ssrn.3647625, 2020
- AI in finance: Challenges and opportunities
- AI in FinTech: A Research Agenda, https://arxiv.org/abs/2007.12681, 2020
- Data Science Thinking: The Next Scientific, Technological and Economic Revolution, Springer, 2018
- Data Science: Profession and Education. IEEE Intelligent Systems, 2019
- Data Science: A Comprehensive Overview. ACM Computing Surveys, 2017
- Data Science: Challenges and Directions. Communications of the ACM, 2017
- Data Science: Nature and Pitfalls. IEEE Intelligent Systems, 2016

The search trend

Fig. 1. The Google search trend of AIDS-related areas in/for finance and economics between Jan. 2004 and Feb. 2020.

Economic-financial business objectives incl. decision and optimization

An Overview of Al in FinTech

Broad-based AI and data

science techniques

for

Economics-finance

L Cao. Al in Finance: A Review

www.datasciences.org

Economic-financial businesses incl. assets, products, instruments, and services

Fig. 1. The Synthesis between AIDS Techniques and Financial Businesses That Forms *Smart FinTech*. The upper fin refers to broad AIDS areas and techniques, the lower fin consists of major financial areas, and the ridge includes various synthetic areas of smart FinTech.

Credit Insurance Wealth	 Economic-financial data analytics Time-series analysis Long and short text analysis Behavior and event analysis Multi-source data analysis Bulti-source data analysis Bayesian network, XGBoost, DNN
Trading Investment Payment Marketing Performance Innovation Security Risk Operations	 Classic research on AIDS in EcoFin Understanding & designing system mechanisms Market analysis and forecasting Agent-based economics and finance & simulation Investment strategy, optimization and management Credit, Ioan and risk Marketing analysis, campaign and customer care Modern research on AIDS in EcoFin Online, mobile, IoT-based and Internet finance Global and cross-market analysis Smart blockchain Alternative products and services Smart operations, governance and regulation
Regulation Social issues Other areas	 Open opportunities: Smart economic-financial futures Strategic planning and development Economic-financial innovations Beyond technologies Open opportunities smart EcoFin futures Text analysis and retrieval, event modeling ABM, DRL, transfer learning, automated learni Al ethics, neuropsychological modeling

Fig. 3. The research areas of AIDS for smart EcoFin and FinTech.

Table 1. AIDS Techniques and Their Representative Applications in Finance.

AIDS areas	AIDS methods	Applicable EcoFin problems
Mathematical	Numerical methods	Valuation, pricing, portfolio simulation and optimization, capital budgeting, hedging
and	Time-series and signal analysis	Price prediction, market movement, IPO prediction, equity-derivative correlation analysis
statistical	Statistical learning methods	Price estimation, VaR forecasting, financial variable dependency modeling, portfolio performance estimate
modeling	Random methods	Abnormal behavior analysis, market event analysis, influence transition analysis, associated account analysis
Complex	Complexity science methods	Market simulation, mechanism design, globalization analysis, crisis contagion, market information flow
evetem	Game theory methods	Policy simulation, regional conflict, mechanism testing, and cryptocurrency mechanism testing
methode	Agent-based modeling	Testing economic hypotheses, simulating policies, supply/chain relations, portfolio optimization
methous	Network science	Modeling entity movement, community formation, interactions and linkage, influence and contagion propagation
Classic	Pattern mining methods	Trading behavior analysis, abnormal trading, outlier detection, investor relation analysis
analytics	Kernel learning methods	Price and market movement prediction, cross-market analysis, financial crisis analysis, crowdfunding estimate
analytics	Event and behavior analysis	Financial event analysis, price co-movement, abnormal behavior analysis, market event detection
learning	Document analysis, text mining,	Financial event analysis, sentiment analysis, company valuation, financial reporting and review, auditing, fake
methods	and NLP	news and misinformation analysis
methous	Model-based methods	Hypothesis testing, index modeling, event analysis, fraud detection, movement forecasting
	Social media and network analy-	Social influence analysis, sentiment analysis, opinion modeling, customer feedback analysis, market and price
	sis	movement, associate account detection, detecting manipulation and insider trading
Computational	Neural computing methods	Macroeconomic and microeconomic factor correlation, valuation, portfolio optimization
intelli-	Evolutionary computing meth-	New product simulation, financial objective optimization, market performance optimization
gence	1	
	ods	
methods	ods Fuzzy set methods	Modeling market momentum, financial solvency, risk and capital costs
methods	ods Fuzzy set methods Representation learning	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports
methods Modern	ods Fuzzy set methods Representation learning Short and informal text analysis	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering
methods Modern AIDS	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance
methods Modern AIDS methods	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth-	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and
methods Modern AIDS methods	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies
methods Modern AIDS methods	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods Deep learning methods	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies Market modeling, behavior modeling, trading modeling, risk analysis, price and movement prediction
methods Modern AIDS methods Hybrid	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods Deep learning methods Parallel ensemble	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies Market modeling, behavior modeling, trading modeling, risk analysis, price and movement prediction Price and market movement forecasting, risk analysis, financial event detection, customer profiling,
methods Modern AIDS methods Hybrid AIDS	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods Deep learning methods Parallel ensemble Sequential and hierarchical hy-	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies Market modeling, behavior modeling, trading modeling, risk analysis, price and movement prediction Price and market movement forecasting, risk analysis, financial event detection, customer profiling, Financial review-based fraud detection, macroeconomic influence on market movement, social media impact on
methods Modern AIDS methods Hybrid AIDS methods	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods Deep learning methods Parallel ensemble Sequential and hierarchical hy- bridization	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies Market modeling, behavior modeling, trading modeling, risk analysis, price and movement prediction Price and market movement forecasting, risk analysis, financial event detection, customer profiling, Financial review-based fraud detection, macroeconomic influence on market movement, social media impact on price movement, epidemic evolution and impact on market volatility, trend and confidence
methods Modern AIDS methods Hybrid AIDS methods	ods Fuzzy set methods Representation learning Short and informal text analysis Optimization methods Reinforcement learning meth- ods Deep learning methods Parallel ensemble Sequential and hierarchical hy- bridization Cross-disciplinary hybridization	Modeling market momentum, financial solvency, risk and capital costs Representation of stocks, assets, markets, portfolios, events, behaviors, and financial reports Text-based trend forecasting of price, market, sentiment and reputation, question/answering Optimizing policies, portfolios, trading strategies, VaR, and market performance Simulating and optimizing supply/demand of new assets and services, discovering trading signals, portfolios and investment actions, optimizing portfolios and trading strategies Market modeling, behavior modeling, trading modeling, risk analysis, price and movement prediction Price and market movement forecasting, risk analysis, financial event detection, customer profiling, Financial review-based fraud detection, macroeconomic influence on market movement, social media impact on price movement, epidemic evolution and impact on market volatility, trend and confidence Psychological factors and irrational market behaviors, behavioral economics and finance, sentiment and intention

AI areas	Financial areas	Typical financial problems	Typical AI methods
Modeling	Understanding	Modeling market ecosystem, pricing, hypotheses, rela-	Mathematical modeling, statistical modeling, quantita-
economic-	financial sys-	tions, interactions, trading, movement, and marketing	tive analysis, game theories, theories of complex systems,
financial	tems	mechanisms, processes, and effect, etc.	simulation, machine learning, etc.
mechanisms	Artificial	Simulating and testing market mechanisms, models, poli-	Computer simulation, agent-based modeling, game the
	financial	cies, new products and services, trading rules, regulation,	ories, theories of complex systems, human machine in-
	markets	stakeholder relations and interactions, etc.	teraction, optimization methods, reinforcement learning,
			etc.
	Market com-	Modeling financial system characteristics; macro, meso	Quantitative and quantitative modeling, complex sys-
Financial	plexities and	and micro indicators and variables; interactions, informa-	tems, information theory, network theories, data analyt-
market analysis	dynamics	tion and influence propagation and effect; etc.	ics, machine learning, etc.
and forecasting	Financial	Modeling and predicting market movement, trend,	Time-series analysis, sequence analysis, pattern mining,
Ĩ	time-series	volatility dynamics, exceptions, events, etc.	dynamic process and programming, machine learning,
	analysis		and deep models, etc.
F	Trading	Discover and optimize strategies, signals and movements	Quantitative analysis, data mining, machine learning, be-
	design and	for pricing, trading, portfolio, and risk management, etc.	havior analysis, risk analytics, and optimization methods,
	optimization		etc.
F	Financial re-	Characterizing and analyzing diversified, hierarchical	Mathematical modeling, statistical modeling, relation
	lation and in-	and multidimensional relations and interactions in finan-	learning, interaction learning, network theories, graph
	teractions	cial variables and participants, etc.	theories, etc.
F	Market	Recognize and predict abnormal movements, trends, be-	Outlier detection, novelty/exception/change detection,
	anomaly	haviors, events inside/outside markets and of partici-	behavior analytics, pattern mining, event modeling, prob-
	analysis	pants, etc.	abilistic modeling, clustering, and classification, etc.
Agent-based	Agent-based	Modeling and simulating markets, supply and demand,	Multiagent systems, simulation theories, human com-
economics and	modeling	participant behaviors and relations, mechanisms, policies,	puter interaction, user modeling, behavior modeling, vi-
finance	0	strategies, emergence and effect, etc.	sualization, etc.
	Agent-based	Simulating macro/micro-economic hypotheses, policies,	Multiagent systems, computational economics and fi-
	economics	protocols, mechanisms and their effect in multiagent sys-	nance, and computational experiments, etc.
		tems, etc.	
Intelligent	Automated	Developing and optimizing intelligent investment mod-	Market representation, forecasting, portfolio optimiza-
investment,	and smart	els, algorithms, platforms and services with market fore-	tion, learn to rank, reinforcement learning, recommender
optimization	investment	casting and risk-averse management, etc.	systems, behavior analysis, deep models, game theories,
and			optimization methods, etc.
management	Online	Selecting, optimizing and managing online or offline di-	Market representation, prediction, learn to rank, game
2	and offline	versified forms and products of portfolios with market	theories, reinforcement learning, recommender systems
	portfolio	prediction and risk management, etc.	behavior analysis, deep models, portfolio optimization
	optimization		optimization methods, etc.
Intelligent	Credit man-	Estimating, predicting and optimizing credit rating. limit.	Profiling, forecasting, prediction, sequential and recur-
credit, loan and	agement	valuation, scheduling, and risk and fraud management,	rent modeling, game theory, reinforcement learning, be-
risk	0	etc.	havior analytics, risk analytics, optimization, etc.
management	Loan man-	Estimating, predicting and optimizing loan value, default,	Profiling, forecasting, prediction, behavior informatics,
0	agement	refund, repayment, refinance, risk and fraud manage-	sequence analysis and modeling, game theory, reinforce
	-	ment, etc.	ment learning, risk analytics, and optimization, etc.
ŀ	Risk man-	Modeling, predicting and managing risk factors, effect	risk analytics, probabilistic modeling, classification, clus
	agement	and its severity, fraud, crime, security-related events and	tering, semi-supervised learning, behavior modeling, se
	0	money laundering associated with diversified financial	quential modeling, event analysis, deep neural models
		products, mechanisms, markets and participants, etc.	and reinforcement learning, etc.
Testelline i	Marketing	Analyzing marketing performance, product/company	Numerical modeling, econometrics, forecasting, predic
Intelligent	analysis and	competitiveness, campaign effect. competitor advantage	tion, event analysis, behavior analysis, interaction analy
marketing	campaign	and strategies, market share change, recommending and	sis, game theories, reinforcement learning, recommender
	1 0	optimizing marketing campaign strategies, actions, and	systems, optimization methods, etc.
		target, etc.	-,, -r
ŀ	Customer	Understanding and predicting customer needs, sentiment.	Profiling, prediction, interaction modeling, behavior and
	manage-	satisfaction, concerns, complaints, circumstance change	lytics, change analysis, social media analysis, text analy
	ment	new demand, potential churning, mitigation strategies	sis and recommender systems, etc.
		etc.	,

Classic AI Techniques and Their Representative Applications in Finance. Table 1.

Al areas	Financial areas	Typical financial problems	Iypical AI methods		
Intelligent	Intelligent e-	Estimating, predicting and optimizing online pricing,	Profiling, predictive modeling, network analysis, web		
online. commerce		demand, supply, production, storage, logistics, delivery,	analysis, social media analysis, text analysis, distributed		
mohile		marketing, risk, fraud, security, etc.	learning, behavior analytics, user modeling, interaction		
IoT based		maneeming, maa, maaa, seearrey, etc.	modeling trajectory modeling recommender systems		
101-baseu			rich analysis at		
and Internet			risk analytics, etc.		
finance	Smart bank-	Supporting smart, secure and risk-averse online/mobile	Various methods of data mining, machine learning, deep		
	ing and pay-	and other banking and payment methods, tools, behav-	learning, distributed learning, recommender systems, be-		
	ment	iors and services; analyzing and predicting banking and	havior informatics, risk analytics, security informatics,		
		payment demand, trend, growth, risk, fraud, security, mal-	etc.		
		functions etc			
	Internet	Automoting predicting accuring and entimizing	Onling/wah/naturals analysis, anding user modeling in		
	Internet	Automating, predicting, securing and optimizing	Omme/web/network analysis, omme user modeling, m-		
	finance	Internet-based financing, investment, wealth manage-	teraction modeling, behavior analytics, text analysis, pre-		
		ment, trust, credit, insurance, payment, etc.	diction, distributed learning, recommender systems, out-		
			lier detection, risk analytics, etc.		
Global and	Macro/micro-	Coupling and analyzing the interactions, relations and in-	Mathematical modeling, statistical modeling, multi-		
cross-	economic	fluence between macroeconomic variables/markets and	source/modal/view analysis, coupling learning, hybrid		
market	analycie	micro-financial variables: and modeling and predicting	methode event analysis behavior analysis interaction		
market	anarysis	the influence of one level on the measurement of the other	lactions, event analysis, benavior analysis, interaction		
anaiysis		the influence of one level on the movement of the other	learning, etc.		
		level of financial markets or variables, etc.			
	Cross-	Modeling relations, interactions and influence between	Multivariate analysis, dependence modeling, coupling		
	market	financial (e.g. underlying-derivative) markets, regions,	learning, relation learning, interaction learning, multi-		
	analysis	countries, companies and financial indicators; modeling	source/modal/view analysis, event modeling, behavior		
	unuyono	relations and influence of economic social cultural and	analysis sequence modeling hybrid methods atc		
		relations and initialice of economic, social, cultural and	anarysis, sequence modering, nyorid methods, etc.		
		political aspects on financial markets; modeling financial			
		crisis, influence and contagion; etc.			
Intelligent	Blockchain	Modeling blockchain system complexities to optimize	Theories of complex systems, game theories, representa-		
blockchain	systems and	blockchain mechanisms and design: evaluating and op-	tion learning, agent-based modeling, reinforcement learn-		
DIOCKCHAIII	mechanisms	timizing bitcoin and cryptographic contracts and models:	ing machine learning deep learning distributed learn-		
	incentariisiiis	entimizing biconi and cryptographic contracts and models,	ing, machine learning, deep learning, distributed learn-		
		optimizing pricing and portiono; etc.	ing, online learning, benavior analytics, prediction, se-		
			mantic web, optimization methods, etc.		
	Blockchain	Enabling secure, privacy-preserving, risk-averse and anti-	Process analysis, event analysis, behavior analytics, out-		
	security	attack blockchain systems and smart contracts; detecting	lier detection, change detection, distributed learning, risk		
		and mitigating malicious attacks and criminal activities:	analytics, security data analytics, fraud detection, and		
		assuring active governance and regulation: etc.	benchmarking, etc.		
	Property	Estimating and predicting property valuation, etc.	Numerical computing machine learning statistical learn		
	riopeny	Estimating and predicting property valuation, pricing, de-	Numerical computing, machine learning, statistical learn-		
Smart	market	mand, supply, recommendation and site selection; evalu-	ing, data mining, knowledge discovery, evolutionary com-		
alternative		ating and optimizing property policies and governance;	puting, text analysis, social media analysis, behavior ana-		
finance		etc.	lytics, recommender systems, etc.		
	Insurance	Estimating, predicting, optimizing and recommending in-	Profiling, classification, statistical modeling, mathemat-		
		surance products and services and their pricing and mar-	ical modeling outlier detection behavior analysis se-		
		ket positioning: personalized product sustamization and	quence modeling interaction learning and document		
		ket positioning, personalized product customization and	quence modeling, interaction learning, and document		
		recommendation; detecting fraud and risk; etc.	analysis, social media analysis, risk analytics, recom-		
			mender systems, deep learning, etc.		
	Foreign	Predicting currency rating and movement; optimizing	Multivariate time series, artificial neural network,		
	exchange	currency portfolio and cross-marketing trading; analyz-	evolutionary computing, coupling learning, multi-		
	market	ing cross-market movement and influence: etc.	source/modal analysis, cross-market analysis, influence		
			modeling behavior analysis and event analysis etc		
	Enorm	Estimating predicting and optimizing the pricing move	Machine learning, ontimization methods, knowledge dis		
	Energy	Estimating, predicting and optimizing the pricing, move-	Machine learning, optimization methods, knowledge dis-		
		ment, supply, demand of electricity, oil, solar, gas, wind,	covery, forecasting and prediction techniques, anomaly		
		nuclear and water power; optimizing energy pricing, mar-	and exception analysis, coupling learning, and depen-		
		keting, service and portfolio; etc.	dency modeling, etc.		
	Wealth man-	Discovering wealthy people and demand: recommending	Customer profiling, behavior analysis, sentiment analy-		
	agement	personalized products services and customer care: de	sis prediction active learning intent learning canability		
	agement	personalized products, services and customer care, de-	sis, prediction, active rearring, intent rearring, capability		
		tecting circumstance change and new requirements; cus-	and propensity modeling, personalized recommendation,		
		tomizing risk management, training and social trading	knowledge engineering, etc.		
		services; etc.			
Optimal	Smart oper-	Evaluating and optimizing operation, governance and	Process analysis, risk analytics, behavior analytics, event		
operations.	ations and	regulation performance; discovering factors, problems	analysis, interaction modeling, relation learning, multi-		
governance	regulation	failures low-performing areas risk and loss of operations	source/modal analysis prediction techniques outlier de		
Bovernance	regulation	and generation and ming areas, risk and loss of operations	testion ate		
and		and governance; analyzing operational, financial, regula-	tection, etc.		
regulation		tory, personnel and service risk; etc.			
	Corporate fi-	Analyzing, predicting and optimizing corporate finan-	Financial time series analysis, numerical optimization,		
	nance	cial budget, balance, accounting integrity, auditing issues.	anomaly detection, probabilistic learning, relation learn-		
		and payment accuracy: detecting and mitigating finan	ing risk analytics representation learning and super		
	1	and payment accuracy, detecting and mitigating man-	ing, risk analytics, representation learning, and super-		
		aid froud arramant income behaviour and a the	trigod and unaunamigad loarsis		
		cial fraud, overpayment, irregular behaviors and activi-	vised and unsupervised learning, etc.		

Table 2. Modern AI Techniques and Their Representative Applications in Finance.

Table 3. Mathematical and Statistical Techniques and Their Pros and Cons in Financial Applications.

Techniques	Methods	Pros in finance	Cons in finance
Numerical	Linear and nonlinear equations, least	Model-driven, hypothesis testing, and forecast-	Complex processes, mechanisms and dynamics; high-
methods	square problem, finite difference meth-	ing; mathematically modeling determinant finan-	dimensional/order and low-quality (e.g., missing, incom-
	ods, dependence modeling, Monte-Carlo	cial processes, mechanisms and dynamics; ana-	plete, inconsistent) data; nonstationary, heterogeneous,
	simulation, etc.	lytic or approximate results and interpretation;	dynamic, uncertain and large data; population size; etc.
		etc.	
Time-series	State space modeling, time-series analy-	Modeling temporal processes, relations, dynam-	Non-temporal, multiple and heterogeneous relations, pro-
and signal	sis, spectral analysis, long-memory time-	ics and effects; trends, movements, changes and	cesses and dynamics; mixed factors, data, relations and
analysis	series analysis, nonstationary analysis,	forecasting; multivariate relations and move-	processes; poor data quality (e.g., noise) and stylist effects;
	etc.	ments; etc.	structure and sample dynamics and nonstationarity; over-
			fitting; population size; etc.
Statistical	Random walk models, factor models, sto-	Model-driven and hypothesis testing; sampling;	Modeling other and mixed relations, processes and dy-
learning	chastic volatility models, copula meth-	latent variables, relations and models; depen-	namics; mixed observable data; poor-quality data; large
methods	ods, nonparametric methods, etc.	dency, uncertainty and randomness; probabilistic	data and scalability; result actionability; etc.
		interpretability; etc.	
Random meth-	Random sampling, random walk models,	Modeling random processes, relations and dy-	Too small or large populations; complex (e.g., imbalanced,
ods	random forest, stochastic theory, fuzzy	namics; randomness, uncertainty, fuzziness; fair	unequal) data; dynamic data; mixed data complexities;
	set theory, quantum mechanics, etc.	and unbiased representativeness; etc.	bias and error; etc.

Table 4. Theories of Complex Systems and Their Pros and Cons in Financial Applications.

Techniques	Methods	Pros in finance	Cons in finance
Complexity	Systems theory, complex adaptive sys-	Modeling system complexities; simulating com-	Incomplete and limited understanding; mixing qualita-
science	tems, chaos theory, random fractal the-	plex financial processes, mechanisms, and char-	tive and quantitative factor modeling; evaluation and op-
	ory, etc.	acteristics; incorporating social science; trial and	timization; etc.
		test; etc.	
Game theory	Zero-sum game, differential game,	Hypothesis testing; rule-based design; scenario	Complex design and interactions; involving financial
	combinatorial game, evolutionary game,	analysis; trail and test; involving reinforcement	rules, theories and measures; complex financial charac-
	Bayesian game, etc.	learning; etc.	teristics; etc.
Agent-based	Multiagent systems, belief-desire-	Rule-based modeling and controlled experi-	. Complex financial scenarios; runtime behaviors and
modeling	intention model, reactive model, swarm	ments; simulation; self-organizing mechanisms;	decision-making; dynamics; quantitative and formal mod-
	intelligence, reinforcement learning, etc.	mechanism testing; etc.	eling; etc.
Network	Linkage analysis, graph methods, power	Modeling networking modes, interactions and	Complex interactions, relations and processes; heteroge-
science	law, small worlds, contagion theory, etc.	processes; social influence; visualization; etc.	neous and high-dimensional financial systems and mech-
			anisms; multi-aspects, sources and modalities; etc.

Table 5. Classic Analytics and Learning Methods and Their Pros and Cons in Financial Applications.

Techniques	Methods	Pros in finance	Cons in finance
Pattern min- ing methods	Frequent itemset mining, sequence analysis, com- bined pattern mining, high-utility pattern min- ing, tree pattern, network pattern, knot pattern,	Extracting and recognizing patternable struc- tures, modes and relations; interpretability; ac- tionable rules; etc.	Infrequent events and behaviors; high false pos- itive; missing important financial events and ac- tivities; relations and interactions; etc.
Kernel learn- ing methods	interactive pattern, etc. Vector space kernel, tree kernel, support vector machine, spectral kernel, Fisher kernel, nonlinear kernel, multi-kernel methods, etc.	Kernel tricks for complex problem modeling; scal- able; metric properties; etc.	Kernel selection; calibration; training; inter- pretability; and actionability; etc.
Event and behavior analysis	Sequence analysis, Markov chain process, high- impact behavior, high-utility behavior, nonoccur- ring behavior analysis, etc.	Modeling financial events, processes, inter- actions, and activities; sequential modeling; event/behavior impact; simulation; visualization; actionable; etc.	Complex processes, interactions and behaviors; insufficient event/behavior modeling theories and tools; mixed and dynamic processes; uncer- tainty and change; predictive consequences; etc.
Document analysis and NLP	Language models, case-based reasoning, statis- tical language model, Bayesian model, latent Dirichlet allocation, Transformer, BERT, etc.	Linguistic and semantic representation and anal- ysis; unstructured data; long and short text; sub- jective and objective factors; sentiment; opinion; etc.	Complex syntactic and semantic relations and structures; expression informality; finan- cial knowledge embedding; multi-linguistic interactions and heterogeneities; scalability; etc.
Model-based methods	Probabilistic graphical model, Bayesian net- works, expectation-maximization model, cluster- ing, classification, deep neural models, etc.	Hypothesis testing; modeling design-based pro- cesses, behaviors and dynamics; paradigm and modeling tools-dependent; wide applicability; etc.	Runtime and dynamic modeling; handcrafting is- sues; model selection; under/over-fitting; finan- cial semantics and knowledge; financial explan- ability; etc.
Social media analysis	Topic modeling, sentiment analysis, emotional analysis, influence analysis, linkage analysis, in- teraction learning, etc.	Modeling financial events, sentiments and opin- ions; social activities, interactions and influence; etc.	Misinformation; bias; mixed financial data and in- formation; financial mechanisms, processes and systems; etc.

Table 6. Computational Intelligence Methods and Their Pros and Cons in Financial Applications.

Techniques Methods		Pros in finance Cons in finance			
Neural com-	Wavelet neural network, genetic neu-	Simulating human neural and cognitive systems and	Limited to neural mechanisms; other complex		
puting meth-	ral network, recurrent neural network,	mechanisms; complex relations and structures; in-	processes and mechanisms; network struc-		
ods	deep neural network, etc.	complete input; data-driven modeling; fault-tolerance;	ture selection; parameterization; overfitting;		
		distributed/parallel processing; hierarchical processing;	computation-intensive; interpretability; action-		
		great learning performance; etc.	ability; etc.		
Evolutionary Ant algorithm, genetic programming,		Simulating evolutionary and genetic systems and mecha-	Limited to evolutionary mechanisms; bias in lo-		
computing self-organizing map, artificial immune		nisms; financial simulation; optimization; exploratory re-	cal/global optimal and extremum; configuration		
methods system, swarm intelligence, neural-		sults; etc.	and parameter tuning; etc.		
	genetic algorithm, etc.				
Fuzzy set	Fuzzy set theory, fuzzy logic, fuzzy neu-	Modeling uncertain, imprecise, fuzzy and contradic-	Modeling limit; fine tuning; approximation; data-		
methods ral network, genetic fuzzy logic, etc.		tory inputs; contradictory objectives; linguistic support;	driven modeling; complex financial mechanisms,		
		rule/symbol-based interpretation; etc.	relations and processes; etc.		

Table 7. Modern AI Techniques and Their Pros and Cons in Financial Applications.

Techniques	Methods	Pros in finance	Cons in finance
Representation	Probabilistic model, graph network, net-	Characterizing intrinsic characteristics and re-	Representation constraints; curse of dimensional-
learning	work embedding, tree model, neural em-	lations; discovering discriminative features and	ity, relation, interaction and heterogeneity; unsu-
	bedding, etc.	representations; various methods; enabling learn-	pervised learning; interpretability; etc.
		ing tasks; etc.	
Short and	Conceptualization, term/tag/phrase sim-	Analyzing informal communications and presen-	Informality complexities; limited information;
informal text	ilarity learning, dependency parsing,	tations; contextual and sequential presentations;	noise and misinformation; uncertainty and incon-
analysis	word embedding, deep neural models,	linguistic specificity; etc.	sistency; etc.
	etc.		
Optimization	Nonlinear, stochastic and dynamic pro-	Theoretical guarantee of correctness and general-	Constraint; approximation; local/global opti-
methods	gramming, information theory, Bayesian	ization; hypothesis and setting specific; optimal	mum; computational complexity; applicability in
	optimization, etc.	results; etc.	complex financial systems; etc.
Reinforcement	Bellman Equation, actor-critic model,	Learning from mistake and correcting error until	Markovian assumption; data and computation-
learning	Markov dynamic progress, deep Q-	perfection; scenario/context-based policy and ac-	hungry; scenario and policy specific; long-term
	network, adversarial reinforcement	tion optimization; modeling interactions; balanc-	dilemma; curse of dimensionality and samples;
	learning, etc.	ing exploration and exploitation; etc.	etc.
Deep learning	Convolutional neural network, attention	Deep abstraction and representation; powerful	Data and computation-intensive; observable and
methods	network, generative adversarial network,	learning architectures; complex hidden relations	explicit financial complexities; robustness; inter-
	autoencoder, deep Bayesian network,	and interactions; domain knowledge and super-	pretability; actionability; etc.
	etc.	vised information; impressive learning perfor-	
		mance; etc.	
Deep financial	Deep neural networks, deep reinforce-	Deep representation and learning of correlations,	Vulnerability of modeling small financial data
modeling	ment learning, deep language learning,	dependencies and temporal developments be-	with asymmetric, non-normal, nonstationary
	hybrid DNN with ARIMA, GARCH and	tween financial factors and across financial mar-	and abruptly evolving features, heterogeneous
	copula etc. classic financial models, fed-	kets and sectors	distributions, and hierarchical couplings within
	erated learning, etc.		and between implicit and explicit factors, etc.

Table 8. Hybrid AI Techniques and Their Pros and Cons in Financial Applications.

Techniques	Methods	Pros in finance	Cons in finance
Parallel en-	Evolutionary neural models, ensemble	Jointly modeling two to more financial aspects;	Model selection and integration; compatibil-
semble	learning, deep Bayesian model, copula	integrating model capabilities; wide applicability	ity; customized modeling process and structure;
	graph neural network, combining com-	in finance; better performance; etc.	problem/task-specific; complexity; etc.
	plexity science and game theory, etc.		
Sequential	Time-series analysis plus classification,	Jointly modeling two to more financial as-	Model selection and integration; compatibil-
and hier-	macro/micro-economic dependency	pects; enhanced modeling capabilities; multi-	ity; customized modeling process and structure;
archical	modeling, deep sequential modeling-	stage modeling; wide applicability in finance; bet-	problem/task-specific; complexity; etc.
hybridization	based event detection, etc.	ter performance; etc.	
Cross-	Deep multi-time series analysis, copula	Jointly modeling two to more financial aspects;	Method selection and integration; compatibil-
disciplinary	deep models, autoregression deep model,	enhanced modeling capabilities; wide applicabil-	ity; customized modeling process and structure;
hybridization	behavioral economics and finance, etc.	ity in finance; better performance; etc.	problem/task-specific; complexity; etc.
Behavioral	Prospect theory, nudge theory, natural	Modeling psychological drivers and insights of	Generalized theories and tools; qualitative-to-
economics	experiment, experimental economics, be-	EcoFin behaviors; financial experiments; subjec-	quantitative modeling; objective and subjective
and finance	havior informatics, intention learning,	tive and social factors; interactions, behaviors	modeling; scenarios and samples specific; predic-
	next-best action modeling, etc.	and actions; etc.	tive power; etc.

Some Examples of AI in Finance

Main challenges

Nonstationarity

• Stationarity

Weak/non-stationarity

NIPS16 tutorial: Theory and algorithms for forecasting non-stationary time series

Nonstationary couplings

- The change of one nonstationary variable is coupled with the change of another one
- Couplings: Association, correlation, dependence, causality, latent relations, etc., which may be
 - Explicit/implicit, global/local, strong/weak, deep/shallow, subjective/objective, etc.

Nonstationary heterogeneous couplings

Z Wu, etc. (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series

D. Rahardja (2005) X-Charts versus X / MR Chart Combinations: IID Cases and Non-IID Cases

Positive and negative correlations

a. FTSE100 and S&P500

b. FTSE100 and GBP

- Stock markets and exchange rate markets are dependent
- Dependences may be diverse
- Cross-market couplings have to be considered in multivariate modeling

Asymmetric and tail dependence

Gumbel Copula (ϑ = 3.35) between S&P500 and STOXX50E

0.4

0.2

ш1

Daily returns of S&P 500 and EUR/USD (01/01/2008 – 31/12/2010)

Modeling Asymmetry and Tail Dependence among Multiple Variables by Using Partial Regular Vine

Example 1: Coupled Behavior Analysis for Pool Manipulation Detection

- Coupled Behavior Analysis with Applications
- Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors
- o Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based Market Manipulation
- Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative Manipulations in Stock Markets

Trading behaviors in stock tick data

Transactional Data

Behavior Feature Matrix

	Investor	Time	Direction	Price	Volume		/ D	D	a
R1	(1)	09:59:52	Sell	12.0	155		D_1	D5	Ø
B2	(2)	10:00:35	Buy	11.8	2000		B_2	B_A	B_8
B3	(3)	10:00:56	Buy	11.8	150	T = 1 I (m)		~	~
B4	(2)	10:01:23	Sell	11.9	200	$FM(\mathbb{B}) =$	B_3	Ø	Ø
B5	(1)	10:01:38	Buy	11.8	200		R_{\circ}	a	a
B6	(4)	10:01:47	Buy	11.9	200		D_6	Ø	Ø
B 7	(5)	10:02:02	Buy	11.9	250		B_{7}	Ø	Ø
RR	(2)	10:02:04	Sell	11.9	500		$\langle D_{i}$	\sim	~

- Each behavior of an investor is a vector
- The collective behaviors form a temporal behavior vector matrix

Coupled behavior modeling

CHMM-based CBA

$$Category: \{\frac{Actor_{i} - Operation_{i}}{Attributes_{i}} \xrightarrow{\eta} \\ \frac{Actor_{j} - Operation_{j}}{Attributes_{j}}\}_{i,j=1;winsize}^{I,J}$$
(14)

Initial distribution of $\Phi(\mathbb{B}_c)|category \to \pi$ (19)

Framework: abnormal CBA

Fig. 5. Framework of abnormal coupled behavior detection

Figure 3: Update Point of ACHMM

$$x_{ij}^{update} = (1 - w)x_{ij}^{old} + w * x_{ij}^{new}$$
(15)

$$y_{ij}^{update} = (1 - w)y_{ij}^{old} + w * y_{ij}^{new}$$
(16)

$$z_{ij'}^{update} = (1 - w)z_{ij'}^{old} + w * z_{ij'}^{new}$$
(17)

$$\pi_i^{update} = (1 - w)\pi_i^{old} + w * \pi_i^{new}$$
(18)

Figure 6: Recall of Six Models

Figure 7: Specificity of Six Models

• Business Performance

Fig. 10. Abnormal Return of Six Models

Example 2: Coupled Hidden Markov Modelbased Financial Crisis Analysis

- Deep Modeling Complex Couplings within Financial Markets
- Financial Crisis Forecasting via Coupled Market State Analysis
- Coupled Behavior Analysis with Applications

Challenges

- Couplings within/between financial markets
- Couplings within/between financial variables
- Heterogeneity between markets, between financial variables

Modeling within/between-market couplings

Fig. 3: Forecasting Process

- Temporal/periodical transition
- State transition within a market
- Coupling between markets
- CHMM for both transitions/influence within and between sequences

Modeling within/between-market couplings

• CHMM-LR:

(1) couplings between equity market and commodity market (C(E,C));
(2) couplings between equity market and interest market
(C(E,I));

(3) couplings between commodity market and interest market (C(C,I)).

- Select financial variables
- Modeling their within/between sequence couplings
- Forecasting

Case study: financial crisis

Pairwise Coupling	Market Indicator
$\mathbb{C}(E,C)$	E: DJIA /C:WTI Oil Price
$\mathbb{C}(C,I)$	C: Gold Price/C:TED Spread
$\mathbb{C}(E,I)$	E: DJIA /I:BAA Spread

Example 3: Copula-based Cross-market Dependence Structure Modeling

- Copula-Based High Dimensional Cross-Market Dependence Modeling
- Modeling Asymmetry and Tail Dependence among Multiple Variables by Using Partial Regular Vine
- Model the Complex Dependence Structures of Financial Variables by Using Canonical Vine
- Vine Copula-based Asymmetry and Tail Dependence Modeling

Challenges

- Multiple heterogeneous financial variables
- Stylized fact: fat tail and asymmetric correlations
- Dependence strength and structure

Copula-based dependence modeling

• Modeling joint distribution between a group of random variables

$$F_1(x_1, x_2, \dots, x_n) = C(F_1(x_1), F_2(x_2), \dots, F_n(x_n))$$

$$C(u_1, u_2, \dots, u_n) = F(F_1^{-1}(u_1), F_2^{-1}(u_2), \dots, F_n^{-1}(u_n))$$

$$f(x_1, x_2, \dots, x_n) = c(F_1(x_1), F_2(x_2), \dots, F_n(x_n)) \prod_{i=1} f_i(x_i)$$

Partial vine for structural dependence

• Weighted partial vine copula (WPVC)

- Partial D vine tree structure for asymmetric dependence in tail risk
- Bivariate copula with different types of tail dependencies
- Truncation with conditional independence (vs. correlations) for high-dimensional

Partial correlation

• Partial D vine structure

$$\rho_{1,2;3,...,n} = \frac{\rho_{1,2;3,...,n-1} - \rho_{1,n;3,...,n-1} \cdot \rho_{2,n;3,...,n-1}}{\sqrt{1 - \rho_{1,n;3,...,n-1}^2} \cdot \sqrt{1 - \rho_{2,n;3,...,n-1}^2}}$$

• Lower and upper tail dependence coefficients

$$\begin{split} \lambda_L &= \lim_{u \to 0} \Pr\{U_1 \le u, ..., U_n \le u \mid U_n \le u\} \\ &= \lim_{u \to 0} \frac{C(u, ..., u)}{u} \\ \lambda_U &= \lim_{u \to 0} \Pr\{U_1 > 1 - u, ..., U_n > 1 - u \mid U_n > 1 - u\} \\ &= \lim_{u \to 0} \frac{\overline{C}(1 - u, ..., 1 - u)}{u} \\ & \bullet \quad 0 \\ \bullet \quad \in (0, 1] \end{split}$$

Partial D vine tree construction

Weighted partial D vine tree construction

- 6 variables, 20 partial correlations
- The smallest PC as the edge of T5: {A,F;B,C,D,E}, conditioned set {A,F} and conditioning set {B,C,D,E}
- Nodes in T5:
 - Constraint sets {A,B,C,D,E} and {F,B,C,D,E}
 - Find the smallest PC for each constraint set and treat them as nodes, e.g. {A,E;B,C,D} and {B,F;C,D,E}
- T4, T3
- Best D vine:

$$\operatorname{argmax}(-ln(D)) \quad D = \prod_{i,j} (1 - W_i \rho_{i,j;d(i,j)}^2)$$

Parameter estimation

• Maximum Log-Likelihood estimation to estimate the parameters of copula constructed w.r.t. vine structures

$$L(\xi:x) = \sum_{j=1}^{n} \left\{ \sum_{i=1}^{p} \ln f_i(x_{i,j};\phi_i) + \ln c(F_1(x_1,n),F_1(x_2,n)\cdots,F_p(x_p,n);\theta) \right\}$$

$$\xi = (\phi_1, \dots, \phi_p, \theta)$$

Estimate parameters for marginal distributions:

$$L_m(\phi:x) = \sum_{i=1}^p \sum_{j=1}^n ln f_i(x_{i,j};\phi_i) \qquad \hat{\phi} = \underset{\phi}{\operatorname{argmax}} L_m(\phi:x)$$

Estimate parameter in copula:

$$L_c(\theta; u, \phi) = \sum_{i=1}^p ln(c(F_1(x_1, n), \dots, F_p(x_p, n); \theta)) \qquad \hat{\theta} = \operatorname{argmax}_{\theta} L_c(\theta; u, \phi)$$

Case study

• Backtesting VaR – Log-likelihood ratio • VaR forecasting of portfolio return

	1-lpha	POF^1	LR_{UC}^2	LR_{IC}^2	LR_{CC}^2
$WPVC_{0.05}$	00%	5	0.0324	2.315	2.347
	9970	1.08%	(0.857)	(0.314)	(0.143)
	05%	26	0.382	0.188	0.570
	9370	5.64%	(0.536)	(0.868)	(0.752)
	0.0%	52	1.100	1.582	2.683
	9070	11.50%	(0.294)	(0.254)	(0.261)
	99%	9	2.186	2.221	4.408
		1.95%	(0.139)	(0.136)	(0.110)
D ST D	05%	27	0.451	0.133	0.584
$D_{-}D_{1}D$	9370	5.86%	(0.730)	(0.916)	(0.618)
	0.0%	57	1.363	3.533	4.896
	5070	12.36%	(0.547)	(0.176)	(0.086)
	0.0%	10	3.376	1.843	5.218
	9970	2.17%	(0.066)	(0.175)	(0.074)
D Ken	05%	27	0.451	0.133	0.584
DINCH	9070	5.86%	(0.730)	(0.916)	(0.618)
	90%	57	1.363	3.533	4.896
		12.36%	(0.547)	(0.033)	(0.086)
	00%	11	4.770	1.439	6.209
	9970	2.39%	(0.029)	(0.230)	(0.045)
Cuine	95%	29	0.662	0.042	0.704
Conte		6.29%	(0.628)	(0.838)	(0.554)
	90%	59	1.782	4.469	6.251
	9070	12.80%	(0.326)	(0.035)	(0.025)
DCC	99%	103	466.082	5.449	471.533
		22.34%	(0.000)	(0.021)	(0.000)
	95%	133	276.570	15.257	291.827
		28.85%	(0.000)	(0.004)	(0.000)
	90%	59	180.570	15.333	195.903
		32.97%	(0.000)	(0.004)	(0.000)

- 25 indicators: 8 exch rates, 13 indices, 3 comdity, 1 comdty index
- In-sample: 5 years; out-of-sample: 10 years
- ARMA(1; 1)-GARCH(1; 1): stocks
- AR(1)-GARCH(1; 1): exchange rate

Example 4: Deep Neural Modeling of Cross-market Couplings

• Deep Modeling Complex Couplings within Financial Markets

Market couplings

Figure 1: A demonstration of complex couplings between financial markets

- Observable variables: dependencies or correlations
- Deep/hidden variables: and their relations
- Temporal couplings

Two-layer cross-market coupling learning

Figure 2: Modeling framework of CTDBN. Here, the demonstration shows two heterogeneous financial markets, stock and currency. The first-layer are CGRBMs to model the intra-maket couplings while CCRBMs are built on the first layer to model inter-market couplings.

Intra/inter-market couplings

Conditional Gaussian Restricted Boltzmann Machines: CGRBM intra-market couplings

$$P(\mathbf{v}, \mathbf{h} \mid \mathbf{u}) = exp(-E(\mathbf{v}, \mathbf{h}, \mathbf{u}))/Z$$
$$E(\mathbf{v}, \mathbf{h}, \mathbf{u}) =$$
$$-\frac{\mathbf{v}^{\mathrm{T}} \mathbf{W} \mathbf{h}}{\sigma} - \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v} - \mathbf{u}^{\mathrm{T}} \mathbf{B} \mathbf{h} + \frac{(\mathbf{v} - \mathbf{a})^{\mathrm{T}} (\mathbf{v} - \mathbf{a})}{2\sigma^{2}} - \mathbf{b}^{\mathrm{T}} \mathbf{h}$$

$$P(v_d \mid \mathbf{v}, \mathbf{u}) = s(b_f + \mathbf{u}^{\mathsf{T}} \mathbf{B}_{:,f} + \mathbf{v}^{\mathsf{T}} \mathbf{W}_{:,f} / \sigma)$$
$$P(v_d \mid \mathbf{v}, \mathbf{u}) = \mathcal{N}(a_d + \mathbf{u}^{\mathsf{T}} \mathbf{A}_{:,d} + \sigma \mathbf{W}_{d,:} \mathbf{h}, \sigma^2)$$

Figure 3: (a) A CGRBM to model intra-market coupling at time t; (b) A CCRBM to model inter-market coupling at time t

Coupled Conditional Restricted Boltzmann Machines: CCRBM inter-market couplings

$$E(\{\boldsymbol{\theta}_{i,t}\}, \boldsymbol{\eta}_t, \{\boldsymbol{\theta}_{i,

$$P(\boldsymbol{\theta}_{ift} = 1 \mid \boldsymbol{\eta}_{ht}, \{\boldsymbol{\theta}_{i,

$$P(\boldsymbol{\eta}_{ht} = 1 \mid \{\boldsymbol{\theta}_{i,t}\}, \{\boldsymbol{\theta}_{i,$$$$$$

Return prediction

	Accuracy				ARR							
Model		Stock		Currency		Stock			Currency			
	US	China	India	US	China	India	US	China	India	US	China	India
ARIMA	0.5357	0.5071	0.5029	0.5471	0.5353	0.5214	-0.1356	0.0415	-0.0675	0.1479	-0.0116	0.0304
Logistic	0.5643	0.55	0.5196	0.6	0.6059	0.5386	0.0226	0.0796	0.0558	0.0269	0.0428	0.0645
ANN	0.6	0.6	0.5752	0.6235	0.6059	0.5747	0.1217	0.1486	0.0788	0.1332	0.1244	0.1032
CHMM	0.6533	0.6214	0.5852	0.6471	0.6353	0.5709	0.1934	0.1426	0.1132	0.1645	0.1498	0.1555
CGRBM	0.6357	0.6235	0.5898	0.6565	0.64	0.5932	0.1568	0.1526	0.1410	0.1758	0.1456	0.1660
CTDBN	0.6729	0.6324	0.6258	0.6734	0.6535	0.6152	0.2073	0.1682	0.2261	0.1926	0.1792	0.1972

Table 2: Performance of comparative methods in US, China and India markets

Table 1: Trading indexes						
Country	Market					
Country	Stock Market	Currency Market				
USA	^DJI	SDR/USD				
Brazil	^BVSP	SDR/BRL				
Russia	RTS.RS	SDR/RUB				
India	^BSESN	SDR/INR				
China	000001.SS	SDR/CNY				

Example 5: Coupling Macro-Meso-Micro Financial Factors for Stock Representation

 Coupling Macro-Sector-Micro Factors on Learning Stock Representation with Less Uncertainty, AAAI-21

Complex multi-macro factors

Figure 2: Some macro-factors to show their varied characteristics (i.e., time intervals, scales and distributions). The

Macro-factor context-based stock representation

 $\mathcal{L}_N = -\mathbb{E}_{\mathbf{X}} \left[\log \frac{f_k(\mathbf{x}_{t+k}, \mathbf{e}_t)}{\sum_{\mathbf{x}_t \in \mathbf{X}} f_k(\mathbf{x}_t, \mathbf{e}_t)} \right]$

Figure 3: The framework of macro-sector context learning.

Method	A	CL18	KDD17		
Method	Acc.	MCC	Acc.	MCC	
StockNet	54.96	0.00165	51.93	0.0335	
LSTM	53.18	0.0674	51.62	0.0183	
ALSTM	54.90	0.1403	51.94	0.0261	
Adv-ALSTM	57.20	0.1483	53.05	0.0523	
CPC	58.14	0.1631	54.47	0.0746	
Co-CPC	58.90	0.1771	58.81	0.1643	
StockNet	58.23	0.0808	-	-	
LSTM	56.82	0.1375	-	-	
CPC	59.11	0.1817	-	-	
Co-CPC	61.62	0.2316	-	-	

Table 1: Performance comparison on two datasets.

Method	AC	L18	KDD17		
wiethoù	Acc.	MCC	Acc.	MCC	
СРС	59.11	0.1817	54.47	0.0746	
Co-CPC(monthly)	59.54	0.1892	56.94	0.1201	
Co-CPC(weekly)	59.76	0.1960	57.02	0.1221	
Co-CPC(daily)	60.03	0.2006	56.63	0.1142	

Table 2: Performance comparison when consider macrofactors with various time intervals. The results of ACL18 dataset here are based on both prices and tweets features.

Figure 6: Cumulative return simulation on two strategies.

Concluding remarks

Opportunities

- Al-driven Strategic Planning and Development
 - Strategic planning and development
- Al-driven disaster management
 - Understanding and managing certainty, black swan/grey rhino events, and changes in economicfinancial systems
- AI-enabled Economic-Financial Innovations
- Beyond AI and Finance
 - Neuropsychological foundation for AIDS and EcoFin
 - Social and ethical issues in AIDS-driven EcoFin
 - Geopolitical and geocultural influence
 - The economics of AIDS for economy and finance

Specifically, complex couplings in finance

- Macro/micro-variables across markets
- Structured/unstructured variables
- Observable and deep factors
- Within/between-variable couplings
- Couplings: dependence, correlation, hidden relations, etc.
- Nonstationary, heterogeneous, multiscale, stylistic, ...

Coupling Learning of Complex Interactions

Thank you very much

More information

www.datasciences.org

- AI in Finance: A Review, http://dx.doi.org/10.2139/ssrn.3647625, 2020
- AI in finance: Challenges and opportunities, https://datasciences.org/fintech/
- AI in FinTech: A Research Agenda, https://arxiv.org/abs/2007.12681, 2020
- Data Science Thinking: The Next Scientific, Technological and Economic Revolution, Springer, 2018
- Data Science: Profession and Education. IEEE Intelligent Systems, 2019
- Data Science: A Comprehensive Overview. ACM Computing Surveys, 2017
- Data Science: Challenges and Directions. Communications of the ACM, 2017
- Data Science: Nature and Pitfalls. IEEE Intelligent Systems, 2016